NLP

Vector Database Implementation

High-performance vector similarity search system optimized for large-scale ML models

2024-01 ~ Present
3 months
PythonFAISSNumPyFastAPIDocker

Project Overview

This project implements a high-performance vector similarity search system designed for large-scale machine learning applications.

Objectives

  • Build a scalable vector similarity search system
  • Optimize for high-dimensional embeddings from LLMs
  • Provide simple API for integration with existing systems

Key Features

HNSW Index Implementation

class VectorIndex:
    def __init__(self, dimension: int, max_elements: int):
        self.index = faiss.IndexHNSWFlat(dimension, 32)
        self.index.hnsw.efConstruction = 200
        self.index.hnsw.efSearch = 50

Challenges & Solutions

Performance Optimization

Initial implementation had high latency for large vector sets. Implemented HNSW index with custom distance metrics, reducing query time by 80%.

Memory Management

Loading large vector sets caused memory issues. Developed chunked loading mechanism with memory-mapped files.

Learnings

  • HNSW 인덱스의 파라미터 튜닝이 검색 성능에 미치는 영향이 매우 큼
  • 메모리 효율성과 검색 속도는 대부분 트레이드오프 관계
  • 벡터 정규화가 검색 품질에 큰 영향을 미침

Future Improvements

  1. 비동기 처리를 통한 인덱싱 속도 개선
  2. 커스텀 거리 메트릭 지원 추가
  3. 분산 환경에서의 확장성 개선
  4. 자동 파라미터 최적화 기능 구현